绝缘置换连接器技术也简称为IDC,采用绝缘置换连接器(IDC)可以实现多点线缆端接,消除了压接中所需的剥线操作。在许多电子应用中,在使用多股线缆时常采用这种大规模端接。本文主要介绍解读IDC绝缘置换连接器技术。
IDC绝缘置换连接器技术的设计理念
压接法和IDC接线法之间的关键区别是压接线缆的方式不同。文章源自线束工程师之家-https://www.suncve.com/explaining-the-technology-of-idc-insulated-displacer-connector/
在压接中,预剥线缆和端子在大压力压接模具作用下严重变形,突破其上面的氧化层而获得金属间的接触。文章源自线束工程师之家-https://www.suncve.com/explaining-the-technology-of-idc-insulated-displacer-connector/
通过施加每个触点相对较大的力,该变形包括端子的塑性变形和线缆的轴向挤压。通常是以强力方式产生冷焊,而很少有弹性能量储存于端接系统中。压接触点的关键尺寸是采用压接工具获得的压接高度的公差(如下面图1所示)。这需要仔细的设置和持续监视以保持长时间的压接高度质量。文章源自线束工程师之家-https://www.suncve.com/explaining-the-technology-of-idc-insulated-displacer-connector/
文章源自线束工程师之家-https://www.suncve.com/explaining-the-technology-of-idc-insulated-displacer-connector/
相反,IDC端接法所需的力要小得多。在这种情况中,将绝缘的线缆压入端子槽内,该槽设计用于使用产生局部塑性变形的剪切力使线缆变形,切穿绝缘层并去除氧化物。这通过一次动作实现,并在线缆与端子之间形成气密性高压力接触面。稳固的IDC系统设计在端子中储存大量的能量,因为端子在端接过程中和之后具有弹性。文章源自线束工程师之家-https://www.suncve.com/explaining-the-technology-of-idc-insulated-displacer-connector/
在IDC端接中,端子的槽宽和插入深度很重要。在落料工艺中很容易将槽宽尺寸控制在0.1密耳。此外,线缆插入由可以简单控制插入深度的工具完成。由于插入深度公差通常为几密耳,可以通过目视检查端接质量。这相对来说更容易适应于生产环境,因此具有优于压接的另一个优点。文章源自线束工程师之家-https://www.suncve.com/explaining-the-technology-of-idc-insulated-displacer-connector/
IDC绝缘置换连接器技术的优缺点
IDC绝缘置换连接器技术的优势是应用成本低和可靠性高。有一个缺点是对连接器几何形状的限制。文章源自线束工程师之家-https://www.suncve.com/explaining-the-technology-of-idc-insulated-displacer-connector/
通常具有双排触点的矩形形状为该系统提供最佳的外观尺寸。另外,要求具有防退线装置,因为在线缆振动的情况下,与端子的接触面可能不够稳定。在出现较大机械应力的应用中,常常需要采用双槽,有时需要采用线缆绝缘夹。文章源自线束工程师之家-https://www.suncve.com/explaining-the-technology-of-idc-insulated-displacer-connector/
性能特征
压接效果良好是因为在压接过程中产生了金属间的接触,由于线缆的轴向挤压而储存了少量的弹性能量。随着时间推移,如果压接头保持在机械稳定的状态,附加的扩散焊可以改善接触面。但是,端子/线缆系统中的应力松弛和蠕变过程趋向于降低其机械稳定性。因此,根据机械设计的不同,蠕变过程可能最终导致退化。如果接触面最初具有边际强度,并由于振动和(或)应力松弛而削弱,那么机械稳定性会限制其使用寿命。文章源自线束工程师之家-https://www.suncve.com/explaining-the-technology-of-idc-insulated-displacer-connector/
IDC端接的机械稳定性取决于端子的弹性性能和线缆的负载状态。从设计的角度来说,这更容易控制。此外,线缆的防退线装置可以防止线缆与端子接触处的松动。如果是实芯线,通过适当的防退线措施,IDC端接由于其固有的较好的机械稳定性,将具有与压接相同甚至更佳的性能。这是因为偏转的端子中储存的弹性能量维持着大压力接触面。典型情况下,对于小线规例如AWG26,端子设计在接触面提供数磅的力和数密耳的弹性偏转。对于较大的线规例如AWG20,压力可高达15至20磅。文章源自线束工程师之家-https://www.suncve.com/explaining-the-technology-of-idc-insulated-displacer-connector/
对于多股线,线芯束的机械稳定性对其性能起着重要的作用。有两个因素影响其性能。首先,由于线芯束承受压缩负载,当因机械扰动、应力松弛和蠕变而在槽中松弛时,会有减小接触力的趋势。潜在的松弛水平取决于所使用的多股线的类型。线芯的数量和层次(或绞合)、导体顶部覆层(镀层)以及绝缘类型对机械稳定性起着重要的作用。
对于一定的绝缘类型来说,无镀层、线芯数多、层次少或无的多股线最难可靠地进行端接;而带覆层的7股线是最简单的,常常具有与实芯线相同的性能。其次,由于接触点由有限数量的线芯(通常是7股线中的4股)构成,线芯间的导电性影响着总体导电性。如果线缆镀锡可以优化总体导电性。很显然在多股线的情况中,良好设计的夹紧线缆绝缘层的应力释放是非常重要的。有时附加(或备用)的IDC端子槽可以提供必需的机械稳定性。通过端子适当的偏转量(柔顺度)和有效的应力释放,可以优化多股线IDC端接的机械稳定性。
线缆负载特性
由于每种线缆具有一套独特的参数,必须评估每种情况中的负载特性,以确定端接特定类型线缆的设计标准。实芯线或多股线的负载特性可以在实验室中进行测定,使用固定的测力计模拟给定引导几何形状的槽。测定结果用于确定端子的负载要求(如下面图2所示)。线缆负载特性可以显示在给定设计的力变化曲线上。请注意,斜角、过渡半径和材料厚度显著影响给定线缆的负载特性。
在该分析之后,设计目标是提供通过预定的设计区线缆曲线的端子。通过检视线缆插入模拟装置后的接触区,确定给定几何形状的设计区。根据定义,设计区是绝缘层被置换,导体有效变形形成大压力的金属间接触的负载曲线区域。在多股线的情况中,设计区通常代表机械稳定性最好的负载曲线区域,该区域拥有尽可能多的线芯构成的良好接触,各根线芯没有严重损坏。
试验方法
IDC接触面的机械稳定性对实用性能起着至关重要的作用。因此,振动、机械和热冲击以及温度/湿度循环是在试验中考虑的重要因素。增强这些因素产生模拟的实用老化的实验室试验,应当在产品认证测试中予以重点考虑。在这种试验项目过程中,端接电阻的变化应当作为首要的性能特性进行监视。简单的失效标准10Rc可以用于判断其性能(线缆与端子接触面的最小接触电阻的10倍)。
结论
当我们考虑IDC端接的基本原理时,很显然这种技术可以在许多应用中具有与压接触点相同的良好性能。而且,这种端接可以降低应用成本。这样一种理想的状况促使我们认真地考虑在线束组配操作中应用IDC技术。许多应用中可提供使用IDC技术的机会,能以较低的成本并保持其端接性能。
推荐阅读: